408 research outputs found

    Direct qqqqqq Force In High Momentum Limit of QCD For Proton Physics

    Full text link
    An explicit construction of the proton wave function is outlined in the high momentum limit of QCD dominated by a direct qqqqqq force, one generated by hooking the ends of a gggggg vertex to 3 distinct qˉgq{\bar q}gq vertices, thus making up a YY-shaped diagram (see fig.1). The high degree of S3S_3 symmetry thus involved ensures that the qqqqqq wave function is a mixture of 56,0+56, 0^+ and 20,1+20,1^+ components, rather than the traditional 56,0+56, 0^+ and 70,0+70, 0^+ type. Some results of this paradigm shift are offered.Comment: 6 pages, Presented at 4th International Symposium on Symmetries in Subatomic Physics at NTU, Taipei, 200

    MarKov-Yukawa Transversality On Covariant Null Plane: Pion Form Factor, Gauge Invariance And Lorentz Completion

    Full text link
    The Markov-Yukawa Transversality Principle (MYTP) on a 2-body Bethe-Salpeter kernel is formulated on a covariant Null Plane (NP) to reconstruct the 4D BS wave function for 2 fermion quarks in terms of 3D entities that satisfy a 3D BSE. This result is the null-plane counterpart of a 3D-4D interconnection for the 2-body BS wave functions found earlier by imposing MYTP covariantly in the instantaneous rest frame (termed CIA) of the composite. This formulation yields a 3D BSE which is formally identical to its Covariant Instantaneity form, thus fully preserving its spectral results, while ensuring full covariance. More importantly, the reconstructed 4D vertex functions in the covariant null-plane ensure that 4D quark-loops are now free from ill-defined time-like momentum integrations (which had plagued the earlier CIA vertex functions), while a simple prescription of `Lorentz completion' in the new description yields a manifestly Lorentz-invariant result.This is illustrated for the pion and kaon form factors with full QED gauge-invariance, showing a k−2k^{-2} behaviour at large k2k^2, and `correct' slopes at small k2k^2. This method is compared with the Kadychevsky-Karmanov light-front formalism.Comment: 17 pages, Late

    A Dynamical Principle For 3D-4D Interlinkage In Salpeter-like Equations

    Get PDF
    The half-century old Markov-Yukawa Transversality Principle (MYTPMYTP) which provides a theoretical rationale for the covariant instantaneous approximation (CIACIA) that underlies all Salpeter-like equations, is generalized to a covariant null-plane ansatz (CNPACNPA). A common characteristic of both formulations is an exact 3D-4D interlinkage of BS amplitudes which facilitates a two-tier description: the 3D form for spectroscopy, and the 4D form for transition amplitudes as 4D loop integrals. Some basic applications of MYTPMYTP on the covariant null plane (quark mass function, vacuum condensates, and decay constants) are given on the lines of earlier applications to these processes under CIACIA. PACS: 03.65.-w ; 03.65.Co ; 11.10.Qr ; 11.10.St Keywords: Markov-Yukawa Transversality Principle (MYTPMYTP); Salpeter-like eqs; Cov Instantaneity Ansatz (CIACIA); Cov Null-Plane Ansatz (CNPACNPA); 3D-4D interlinkage; Vertex function; 4D loopsComment: LaTeX file, 25 pages, to be published in Nuclear Phys.

    Adjustment of the electric current in pulsar magnetospheres and origin of subpulse modulation

    Full text link
    The subpulse modulation of pulsar radio emission goes to prove that the plasma flow in the open field line tube breaks into isolated narrow streams. I propose a model which attributes formation of streams to the process of the electric current adjustment in the magnetosphere. A mismatch between the magnetospheric current distribution and the current injected by the polar cap accelerator gives rise to reverse plasma flows in the magnetosphere. The reverse flow shields the electric field in the polar gap and thus shuts up the plasma production process. I assume that a circulating system of streams is formed such that the upward streams are produced in narrow gaps separated by downward streams. The electric drift is small in this model because the potential drop in narrow gaps is small. The gaps have to drift because by the time a downward stream reaches the star surface and shields the electric field, the corresponding gap has to shift. The transverse size of the streams is determined by the condition that the potential drop in the gaps is sufficient for the pair production. This yields the radius of the stream roughly 10% of the polar cap radius, which makes it possible to fit in the observed morphological features such as the "carousel" with 10-20 subbeams and the system of the core - two nested cone beams.Comment: 8 pages, 1 figur

    Phonon effects in molecular transistors: Quantum and classical treatment

    Full text link
    We present a comprehensive theoretical treatment of the effect of electron-phonon interactions in molecular transistors, including both quantal and classical limits and we study both equilibrated and out of equilibrium phonons. We present detailed results for conductance, noise and phonon distribution in two regimes. One involves temperatures large as compared to the rate of electronic transitions on and off the dot; in this limit our approach yields classical rate equations, which are solved numerically for a wide range of parameters. The other regime is that of low temperatures and weak electron-phonon coupling where a perturbative approximation in the Keldysh formulation can be applied. The interplay between the phonon-induced renormalization of the density of states on the quantum dot and the phonon-induced renormalization of the dot-lead coupling is found to be important. Whether or not the phonons are able to equilibrate in a time rapid compared to the transit time of an electron through the dot is found to affect the conductance. Observable signatures of phonon equilibration are presented. We also discuss the nature of the low-T to high-T crossover.Comment: 20 pages, 19 figures. Minor changes, version accepted for publication in Phys. Rev.

    Isospin-Violating Meson-Nucleon Vertices as an Alternate Mechanism of Charge-Symmetry Breaking

    Get PDF
    We compute isospin-violating meson-nucleon coupling constants and their consequent charge-symmetry-breaking nucleon-nucleon potentials. The couplings result from evaluating matrix elements of quark currents between nucleon states in a nonrelativistic constituent quark model; the isospin violations arise from the difference in the up and down constituent quark masses. We find, in particular, that isospin violation in the omega-meson--nucleon vertex dominates the class IV CSB potential obtained from these considerations. We evaluate the resulting spin-singlet--triplet mixing angles, the quantities germane to the difference of neutron and proton analyzing powers measured in elastic n⃗−p⃗\vec{n}-\vec{p} scattering, and find them commensurate to those computed originally using the on-shell value of the ρ\rho-ω\omega mixing amplitude. The use of the on-shell ρ\rho-ω\omega mixing amplitude at q2=0q^2=0 has been called into question; rather, the amplitude is zero in a wide class of models. Our model possesses no contribution from ρ\rho-ω\omega mixing at q2=0q^2=0, and we find that omega-meson exchange suffices to explain the measured n−pn-p analyzing power difference~at~183 MeV.Comment: 20 pages, revtex, 3 uuencoded PostScript figure

    Non-Abelian dynamics and heavy multiquarks, Steiner-tree confinement in hadron spectroscopy

    Full text link
    A brief review is first presented of attempts to predict stable multiquark states within current models of hadron spectroscopy. Then a model combining flip-flop and connected Steiner trees is introduced and shown to lead to stable multiquarks, in particular for some configurations involving several heavy quarks and bearing exotic quantum numbers.Comment: 8 pages, 5 figures, Invited talk at the 21st European Conference on Few-Body Problems in Physics, Salamanca, Spain, August 29th--September 3rd, 2010, to appear in the Proceedings, ed.~A.~Valcarce et al., to appear in Few-Body Syste

    Tri-meson-mixing of π\pi-η\eta-ηâ€Č\eta' and ρ\rho-ω\omega-ϕ\phi in the light-cone quark model

    Full text link
    The radiative transition form factors of the pseudoscalar mesons {π\pi, η\eta, ηâ€Č\eta'} and the vector mesons {ρ\rho, ω\omega, ϕ\phi} are restudied with π\pi-η\eta-ηâ€Č\eta' and ρ\rho-ω\omega-ϕ\phi in tri-meson-mixing pattern, which is described by tri-mixing matrices in the light-cone constituent quark model. The experimental transition decay widths are better reproduced with tri-meson-mixing than previous results in a two-mixing-angle scenario of only two-meson η\eta-ηâ€Č\eta' mixing and ω\omega-ϕ\phi mixing.Comment: 8 pages, 6 figures, final version to appear in EPJ

    A New Approach to the 3D Faddeev Equation for Three-Body Scattering

    Full text link
    A novel approach to solve the Faddeev equation for three-body scattering at arbitrary energies is proposed. This approach disentangles the complicated singularity structure of the free three-nucleon propagator leading to the moving and logarithmic singularities in standard treatments. The Faddeev equation is formulated in momentum space and directly solved in terms of momentum vectors without employing a partial wave decomposition. In its simplest form the Faddeev equation for identical bosons, which we are using, is an integral equation in five variables, magnitudes of relative momenta and angles. The singularities of the free propagator and the deuteron propagator are now both simple poles in two different momentum variables, and thus can both be integrated with standard techniques.Comment: 8 pages, 1 figur

    Effective Lagrangian Approach to the Theory of Eta Photoproduction in the N∗(1535)N^{*}(1535) Region

    Full text link
    We investigate eta photoproduction in the N∗(1535)N^{*}(1535) resonance region within the effective Lagrangian approach (ELA), wherein leading contributions to the amplitude at the tree level are taken into account. These include the nucleon Born terms and the leading tt-channel vector meson exchanges as the non-resonant pieces. In addition, we consider five resonance contributions in the ss- and uu- channel; besides the dominant N∗(1535)N^{*}(1535), these are: N∗(1440),N∗(1520),N∗(1650)N^{*}(1440),N^{*}(1520),N^{*}(1650) and N∗(1710)N^{*}(1710). The amplitudes for the π∘\pi^\circ and the η\eta photoproduction near threshold have significant differences, even as they share common contributions, such as those of the nucleon Born terms. Among these differences, the contribution to the η\eta photoproduction of the ss-channel excitation of the N∗(1535)N^{*}(1535) is the most significant. We find the off-shell properties of the spin-3/2 resonances to be important in determining the background contributions. Fitting our effective amplitude to the available data base allows us to extract the quantity χΓηA1/2/ΓT\sqrt{\chi \Gamma_\eta} A_{1/2}/\Gamma_T, characteristic of the photoexcitation of the N∗(1535)N^{*}(1535) resonance and its decay into the η\eta-nucleon channel, of interest to precise tests of hadron models. At the photon point, we determine it to be (2.2±0.2)×10−1GeV−1(2.2\pm 0.2)\times 10^{-1} GeV^{-1} from the old data base, and (2.2±0.1)×10−1GeV−1(2.2\pm 0.1) \times 10^{-1} GeV^{-1} from a combination of old data base and new Bates data. We obtain the helicity amplitude for N∗(1535)→γpN^{*}(1535)\rightarrow \gamma p to be A1/2=(97±7)×10−3GeV−1/2A_{1/2}=(97\pm 7)\times 10^{-3} GeV^{-1/2} from the old data base, and A1/2=(97±6)×10−3GeV−1/2A_{1/2}=(97\pm 6)\times 10^{-3} GeV^{-1/2} from the combination of the old data base and new Bates data, compared with the results of the analysis of pion photoproduction yielding 74±1174\pm 11, in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in Phys. Rev.
    • 

    corecore